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mABSTRACT

This report examines maximum likelihood parameter estimation for signal
models characteristic of the stepped sinusoid response of underwater
acoustic transducers. This includes a review of the principal component
linear prediction mthod, an exposition of the variable projection
nonlinear least-squares method, a review of linear least-squares theory
with special emphasis on generalized inverses and projection operators,
and a discussion of iterative techniques for nonlinear least squares
algorithms. The estimation problem is found to to be particularly
difficult when the stepped sinusoid excitation is at or near a resonance
and the observation time is short compared to the model transient.
Characteristic least-squares error surfaces and contours are obtained for
a two pole high-pass transducer model. A variable projection
implementation of a maximum likelihood estimator is used to study

i parameter estimation when the excitation is near resonance.

I KETWORDS - signal modeling, maximum likelihood parameter estimation,
nonlinear least-squares, variable projection functional,
orthogonal projection operator, generalized inverse, minimum
norm solution, QI Factorization, Gauss-Newton method.
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I 1. INTRODUCTION

I
Calibration of an underwater acoustic transducers entails, in part,

estimating the steady-state response of the transducer to stepped

sinusoid excitations. Of particular interest is the steady-state

Iamplitude, which is used to characterize the transducer radiation
pattern. An inherent problem arises, though, in making the response

measurements, since reflections from measurement volume boundaries can

corrupt the sigral limiting the length of available data. The desired

signal data is thus confined to a finite observation window occurring

between the arrival of the wave at the hydrophone via the direct path

from the projector and via the reflected paths (see Figure 1).

IThe problems caused by these reflections become critical at low

frequencies (particularly for complex high power devices) because the

decaying component of the transducer's transient response may not settle

*to a negligible level at any time during the available observation

window, thus making direct measurement of the steady-state amplitude and

Iphase impossible. This, therefore, necessitates estimating the steady-

state information from the transient portion of the response.

In research previously carried out at the Naval Research Laboratory,

Underwater Sound Reference Detachment, and at the Center for

Communications and Signal Processing, University of South Florida (1], a

signal parameter estimation algorithm utilizing principal component

linear prediction as described by Kumerasean and Tufts [2], was used for

Iestimating these parameters. This method was found to yield acceptable

results (as assessed by the Cramer-Rao bounds for unbiased estimates) for

excitation frequencies away from the resonant frequency of the
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I transducer. For excitation frequencies near the resonance, however, the

mean square errors of the estimates were unnacceptably larger than the

Cramer-Rao bound, thus suggesting the need for a maximum likelihood

estimator. This report addresses this problem.

The maximum likelihood algorithm presented is based upon the variable

Iprojection nonlinear least-squares method described by Golub and Pereyra
[3]. This method essentially reduces the number of parameters which must

be optimized iteratively by defining a new cost functional, the variable

projection functional, which is a function only of the observation vector

and those parameters which occur nonlinearly in the signal model. For

example, the two-pole high-pass model of a transducer used in our

simulations results in a variable projection functional which can be

I mapped solely in terms of the damping factor and frequency of the

decaying component of the transient. A contour plot of this error

function for a particular signal parameter model is shown in Figure 2.

* The goals of this document are to provide an exposition of the theory

for obtaining maximum likelihood parameter estimators for stepped sine

* response signal models and to report results of simulation studies of the

effectiveness of an ML algorithm. This will include (1) a reveiw of

principal component linear prediction, (2) an exposition of the variable

projection nonlinear least-squares method, (3) a review of linear least-

squares theory with special emphasis on the construction of generalized

inverses and projection operators, and (4) a discussion of iterative

techniques necessary for the implementation of nonlinear least-squares

I algorithms.

* In addition to presenting the results of the computer simulations

using the algorithm outlined, contour and surface plots of the variable

I
I
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I projection functional are provided. The parameter estimation problem is

seen to be particularly difficult for stepped sinusoid excitations near a

resonance. Maximum likelihood performance is achieved by the computer

implementation of the variable projection algorithm described herein down

to a threshold signal-to-noise ratio which depends on the quality factor

(or Q) of the transducer model.
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1 2. BACKGROUND

I
This chapter provides a background of a parameter estimation

problem that arises in acoustic transducer calibration. A model will be

defined and the parameter set which uniquely defines the signal will be

I chosen. It will then be shown that, if the reflection free signal is

corrupted with white gaussian noise, then nonlinear least-squares and the

maximum likelihood estimators are the same. A review of the principal

* component linear prediction method will then be provided.

2.1 Acoustic Transducer Response to a Stepped Sinusoid Excitation

I A suitable model for a transducer's response to a stepped sinusoid

excitation is a steady-state sinusoid (of the same frequency as the

excitation) and a sum of damped sinusoids (corresponding to the system

poles) [4]. For real signals, this can be written as

K
x(t) = A0 cos(2rf0 t+#0 ) + Y A. exp(-ajt) cos(2rf t+0j). (1)

j=1

where K is the number of real system poles plus the number of complex

conjugate system pole pairs. The parameters which uniquely define the

signal are

{ A0, 00, fO, A,, 01, fl, a,, . A K' IK' K' ao-

Each sinusoid in this model may be further decomposed into its

* Cartesian components so that the signal poles are the only parameters

which enter into the model nonlinearly. Thus the signal model becomesI
I
I
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U x(t) = A0 co2rf0t) + A0 sin(2rf 0 t)
C 1.S

K
I + ~ (A~t)

Sj= exp(-aj t) IAjCcos(2rf t) + Ai.sin(2ifjt) (2)

I rom which we obtain the new parameter set

{ AOC AOC, f AC, A1s f, a,, _.., AKCI AKs, K' K (3)

Having estimated this parameter set, we may calculate the desired

amplitudes and phases from

Ai A- 2 + A$2 ]1/2 and Oi=- tan-1 [ (4)
1 C 1 A~ J

I
2.2 Nonlinear Least-Squares Maximum Likelihood Parameter EstimationI

The parameter estimation approach to system identification has proven

to be a powerful tool in problems where the system ol interest is known,

a priori, to have a particular model structure, M [5]. In this case, the

model can be parameterized as M(X) using the parameter vector 8 C DMI

where D M is an appropriate domain. Thus the family of models is

fM(§) I a C DM (5)

and the search for the model which best decribes the system becomes a

search for the best parameter vector, 2. In determining the best model

parameters, we invoke some penalty function, or cost functional, which

quantifies in some way the error of estimation.

Since the data used to estimate the model parameters are generally

I corrupted by additive noise, the observations are themselves random

variables. The Maximum Likelihood Estimator (MLE) has been shown [6] to

be the best possible estimator for the model parameters given the uniform

I
I
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U prior probability distribution. In maximum likelihood estimation, we

wish to find the parameter vector which maximizes the probability of the

observed data. This is

8. = Arg max P(y1, y2 ,"" YNI!) (6)

where p(y1 , Y2, "'" YN
t 8) is the likelihood function.

Let us assume the the observations are, in fact, the sum of an ideal

signal xi and zero mean gaussian white noise, Ei. Thus

Yn = XIa + En" (7)

The estimation error is then

en = Yn - n(§)  (8)

and the likelihood function for estimating I becomes

I ~' YNI' ' = [2roe2 ]N/2 Xp( - n l 'n - *n( ]}
1 (9) ]

Now since the logarithm is a monotonic function, maximizing the

logarithm of the likelihood function yields the same result as maximizing

the likelihood function itself. Thus we may define the log likelihood

function as

I L(§= In { P(YI' Y2 ... YNI)

SNIn (2)- N in (or -  i- -  n ]2 (02 2 Yn

2aI n--n

I Of the terms in (10), only the last is dependent upon 8 and this term

appears in the expression with a negative sign. Therefore, the parameter

vector which maximizes the log likelihood function, and thus the

likelihood function, is the one which minimizes

I
I
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I N 2

which is simply the least-squares functional. Thus we see that for the

case of an ideal signal in gaussian white noise, nonlinear least-squares

estimation provides the maximum likelihood estimator.

I Before moving on to the direct nonlinear least-squares approach to

the transducer signal parameter estimation problem, an indirect approach

will be described.

2.3 The Principal Component Linear Prediction MethodI
Linear prediction is a method of difference equation modelling used

I- to estimate the poles of exponential signals. Linear prediction

simplifies a typically nonlinear problem by solving a related linear

problem, namely estimating the coefficients in the difference equation.

From these coefficients, the exponential poles can be obtained by forming

and solving for the roots of the prediction polynomial (the z-plane

I representation of the difference equation).

Least squares linear prediction dictates the solution of an

overdetermined system of equations to obtain the prediction coefficients.

* Principal component linear prediction takes this a step further and

dictates the use of an overmodelled prediction error filter, i.e. a

difference equation of order larger than the expected signal order, and

the use of a rank reduced approximation to the pseudoinverse in the least

squares solution for the coefficients. Consequently, principal component

linear prediction neccessitates a selection process to separate the

signal poles from the remaining estimates.

I
I
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U The signal parameter estimation algorithm can be summarized in the

following three steps:

(1) solution for the prediction coefficients using the principal

I component method,

(2) signal pole selection, and

(3) linear least-squares solution of the signal amplitudes.

* Step 1: Solution for Prediction Coefficients

It is well known that an q'th order discrete time linear system may

be described by the q'th order forward difference equation

y(n) = aly(n-I) + a2y(n-2) + *e" + ay(n-q).

I We may similarly describe the system using the backward difference

* equation

y(n) = bly(n+l) + b2y(n+2) + -,- + b qy(n+q).

Moving all terms to the left hand side and taking the z-transform of the

backward difference equation yields

Y(z) [1-b 1 z - b2 z
2 -" -bq zq] = O. (12)

By determining the coefficients bl,...,b q and equating the polynomial in

brackets to 0, the system's z-plane poles can be found as the reciprocals

* of the backward prediction polynomial roots.

In linear prediction (11], an arbitrary linear system is modeled by a

difference equation whose order (say, order L) is not necessarally equal

to the system order; the prediction equation is said to be overmodelled

I or undermodelled, depending on if the order L is chosen greater or less

than the system order. Also, depending on whether the coefficients are

determined for the forward or backward difference equation, the technique

is called forward or backward prediction, respectively.

I
I
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I Given data samples yn, n--O,l,...,N-1, the system of backward backward

I predictions is

Ab=- b , (13)

where b = [bl,...,bJ]T is the unknown vector of backward prediction

coefficients,h = Yo' ...,YN-L- T , and A is the Hankel data matrix
SYl Y2 • • " YL

Y2 Y3 YL+1

A " " • (14)

N-L 0N-L+ " YN-

* A primary difference which distinguishes the principal component

method of linear prediction from that used in typical least squares

linear prediction is first the use of a prediction order L much larger

than the known or estimated system order (overmodelling), and then the

use of a rank reduced approximant to the Hankel matrix using the

singular value decomposition.

Briefly stated, the singular value decomposition factors an arbitrary

I NXM (usually N > M) matrix, A, as

A = U E VT, (15)

where U is the NxN orthogonal matrix of left singular vectors, V is the

MXM orthogonal matrix of right singular vectors, and E is an NXM matrix

whose only nonzero elements lie along the diagonal of the first M rows.

I These diagonal elements of E, called the singular values of A, are non-

negative and arranged in non-increasing order. If A is a numerically

rank deficient matrix with rank r < M, then only the first r singular

values will be nonzero. If the true rank of the system is r < M, yet

noise in the data causes the numerical rank of the matrix to equal M,

I
I
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U then the first r singular values are called the principal singular values

and rank reduction can be performed on the matrix A by setting to zero

all but the these principal singular values.

Having performed the singular value decomposition and rank reduction

of the Hankel data matrix A, the Moore-Penrose generalized inverse of A

I can be defined as

A# = V E# uT. (16)

Here, E# is an MXN matrix whose only nonzero elements are the first r

elements along the diagonal of the first M columns. These nonzero

elements are the reciprocals of the r principal singular values. Given

I this pseudoinverse, the minimum norm linear least-squares solution for

the backward prediction coefficient vector is

: b = - A# h. (17)

Step 2 Signal Pole Selection

With the prediction coefficients in hand, a pool of z-plane pole

estimates can be obtained by solving for and taking the reciprocal of the

I roots of the backward prediction polynomial

_b1 + b1 z + b2 z2 + "'" + bL zL = 0, (18)

Due to the overmodeling used in the principal component method, these

roots will be far more numerous than the actual signal poles, so that a

number of these are 'extraneous' roots, from which the actual signal

I poles must be distinguished. In the transducer signal parameter

estimation problem, these signal poles will include a steady-state pole

which lies on the unit circle in the z-plane and the system poles which

will fall outside of the unit circle. Kumerasean has observed [12] that

while these signal poles fall outside of the unit circle, the extraneous

I
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I roots will fall within the unit circle. Thus the location at which the

backward prediction polynomial roots fall within the z-plane provides a

method of pole selection.

While Kumerasean's method of selection works well at high signal-to-

noise ratios, simulations have indicated that a signal-to-noise ratio

I threshold is reached, below which this method of pole selection cannot

distinguish between the extraneous roots and the signal poles. Because

of this, a more general method utilizing subset selection [10] has been

adopted. This signal pole selection technique consists of three parts:

(1) reflection of roots into the unit circle and transformation

* to the s-plane

(2) replacement of the excitation pole, and

(3) subset selection of the remaining poles.

In part 1, the roots are selectively reflected about the unit circle

so that all roots fall within the unit circle in the z-plane (so that all

* pole estimates will be stable). The roots are then transformed to the s-

plane using the following equations:

I si = -a. i j27fi
where

a. ln IZ. II T I
and f= -1 imag(zi) 1I 1 rta real~s.)'

where T is the sampling interval, s. are the s-plane poles, and z. are

the N-plane poles.

In part 2, all roots are examined one at a time and the root which

lies closest to the known excitation pole in the s-plane is marked as the

steady-state pole and removed from the pool of roots. The known

theoretical pole value (ao-O,2rfO) is then used throughout the remainderI
I
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of the estimation process (in the subset selection of the other poles and

the amplitude solution.

In part 3, the remaining roots are taken p at a time (where p is the

number of system poles), and along with the excitation pole, used to form

the basis function matrix for the linear least-squares equation for the

Iamplitudes. The observation vector is then projected onto the column
space of each of these basis function matrices and the group of p roots

which result in the lowest residual sum of squares is chosen as the

remaining pole estimates. In this way, the pole subset which best fits

the data in the least-squares sense is determined.I
Step 3: Amplitude Solution

The final step in the signal parameter estimation algorithm is the

linear least-squares estimation of the signal amplitudes. This is

performed by constructing the basis function matrix, F, consisting of

complex exponentials corresponding to each of the estimates poles, for

which the desired amplitudes are simply linear weighting factors.

IDefining I to be the vector of unknown amplitudes
A = [ A 0  A A1  A1 ,... AKC, A K ]T

the problem is to solve for a in the linear least-squaresd problem

F a z. (19)

I
I
I
I
I



3. VARIABLE PROJECTION NONLINEAR LEAST-SqUARBS THEORY

This chapter provides an exposition of the theory of the variable

projection approach to solving nonlinear least-squares problems, as

developed by Golub and Pereyra [3]. This approach partitions the unknown

U model parameters into two groups: those that occur linearly in the model

and those that occur nonlinearly in the model. By performing this

separation of variables, one is provided the opportunity to solve the

I nonlinear least-squares problem as a sequence of two computationally

simpler problems.

Sections 3.1 through 3.4 introduce the notation and review vector-

matrix calculus material necessary for the subsequent derivations. The

I remainder of the chapter derives three principal results: (1) the

* relationship between the linear and nonlinear parameters within the

least-squares framework which allows the separation of variables, (2) an

expression for the derivative of the projection operator, and (3) an

expression for the gradient of the variable projection functional. With

these results, a wide range of standard solution techniques are available

for minimizing the least-squares functional in the two-step procedure

described.

I
3.1 Parameter Model Definition

I
The variable projection method is applicable to parameter estimation

I problems in which the signal model can be decomposed as a set of

nonlinear basis functions weighted by a set of coefficients. These

nonlinear basis functions are a function only of the independent variable

I
I
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U (say, time) and a set of parameters which we will call collectively the

nonlinear parameter vector. Symbolically, we may write this as
M

Xn =" a f(9,t) , (20)
j=l n 1

alternatively written as

Xn = T' ( ) a (21)

where

81 '2 [ele ... IeK ]T (22)

= nonlinear parameter vector,

ia = [ala 2,...,a]T (23)

= linear parameter vector,

a LT(,tn) =[ f 1 (, t.)I f 2 (,tn), ... f m(Ln) ] (24)

I = basis function vector.

I 3.2 The Least-Squares Functional

The parameter estimation problem attempts to form an estimate, An' of

an ideal signal, Xn, from observed data, presumably of the ideal signal

in noise. This is written symbolically as

Yn = Xn +wn, n = 0,1,...,N-1 (25)

where wn are independently distributed random variables and xn are as

described in the previous section.

I In forming this estimate of Xn, we seek to minimize, by appropriate

choice of a and 0, the Least-Squares Functional (LSF), defined as

I
I
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I2
I= I !L -') 112 (26)

N-1 2

- [y, - , , .) ] (27)
n=O

N-1 M 2

n=O j=1

N-1 2= I -f7et)a (29)

n=O

Here, ea,p) is the signal estimation error vector. Since the

Euclidean norm (2-norm) 1I *112 is used throughout this development, the

subscript will subsequently be dropped for convenience.

Let us now define the independent variable vector
.. I N -

and write the observed data in vector notation as

IX YO= [ y11.. YNI] T .  (30)

Let us also define the basis function matrix

f T(Q,t 0 ) f 1 (_,to) • . . fuCo,to)
t7LI i fi(Q-tl) "'" I(eti)

I _ " "* (31)

, OtN-d_1)  Le-'tN-l ) • fMO~tN-l)

whose elements are independent of the linear parameters and whose rows

each correspond to an element of the observation vector.

We may now define the LSF in terms of the basis function matrix by

writing

I
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where we have dropped the explicit time dependence for convenience.

O(a,D) is minimized when V(a,f)--O, where V is the gradient operator.

While developing an expression for this gradient (of the LSF), the linear

I and nonlinear parts of the model will be separated and a new cost

functional, the variable projection functional, will be defined.

3.3 Differentiation with Respect to a Vector

* Consider the vector

x =[X1 , x2, "." xKIT"

Differentiation of a scalar function f0 with respect to x yields
at U, at ,(x) at)-- a,(x) T. (33)

x - [ 8x1  ' ax2  ' "I * ]( )

U A particularly interesting case of this is the quadratic form,

I X= xTA x (34)

where A is a K X K constant matrix. For this case, we obtain simply

a 2 x. (35)

I Now consider the (row) vector function f (x defined by

tT(jX = [ f 1UX) '20' ' .. ]*Mx
Differentiation of I (x) with respect to x yields the K X M Jacobian

I matrix

I
I
I
I
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axT 1 ax 1

UT 1fx 8x_1_

Ox Ox2  Ox2  (38)

f ( X af ( _X

axK 8xK

Finally, consider the N X M matrix function F(I,D_ defined by

{ F(M,D )ij = f (x'ti) , i = 1,2,...,N, j 1

Defining D(F) - , the resulting derivative will be an NXMXK

tensor (three-dimensional array) defined by

SD(F) ) = 8x k  i = 1,2,...,N , j = 1,2,...,M,
k = 1,2,...,K. (37)

Note that this derivative tensor can be viewed as a series of partial

derivative matrices, or 'slabs', each corresponding to differentiation

with respect to one of the variables in the vector. This type of

differentiation is described in [3] and is called the Frechet derivative

* of a mapping.

I 3.4 Differentiation of the Squared Norm

U The squared norm of a vector function f Ux is a scalar function

* 7(Ux defined by

=Y fT U f U) (38)

= [ ]2 Ux(39)
Ij=1
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Differentiation of this with respect to x thus yields

a7[ 8 7() 87() 87(1) iT

ax - [ X1  , OX2  .K i (40)

* where

a7(x) M fJ )

axk j=1 j . (41)

Substituting (41) into (40) and simplifying, we obtain

j=1 e x1

2 2 f j*) axT
87Ux j=1 2 _T X(

ax x 2 ax - . (42)I

II
j=1 ax

3.5 Gradient of the Least-Squares Functional

Recall the Least-Squares Functional (LSF) given by

I -( ,) -II -( ', ) II

I-I!y - F(P) 112
where z is the N-vector of observations,

a is the M-vector of linear parameters,

e is the K-vector of nonlinear parameters, and

F( ) is the N X IL basis function matrix.

I
I
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By partitioning the overall parameter vector as [TTT we may

write the gradient function in partitioned form as

8a 
(43)

86

A critical point of #(a,I) is found by evaluating VO(a,f)--O, which, in

general, requires the simultaneous satisfaction of

-o 0(44)8a

* and

-e = 0. (45)

Let us focus, for the moment, on the evaluation of (44). Applying

(42) to (32), we obtain

= 2 ( [ z-F( I]} [ y_ F(a] (46)

-2 (B 'a ] T F (p) a]

= -2 F T [ - _ F(P) ] (47)

where it has been noted thatI oFT oT
Ua 0 and a- I.

Equating (47) to zero and rearranging yields

ST(1) F (D a = FT ( z (48)

which, for a given 0, represent the linear least-squares normal equations

in which the observation vector Z is projected onto the range of the

basis function matrix to obtain the vector a. This result will be

I
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utilized in the next section in developing a cost functional for the

nonlinear parameters independent of the linear parameters.

I 3.6 The Variable Projection Functional

U In the previous section, it was shown that differentiating the least-

squares functional with respect to the linear parameter vector and

evaluating at zero led to the linear least-squares normal equations for

a. The Gauss-Markov Theorem [6] demonstrates that the Moore-Penrose

generalized inverse, or pseudoinverse, provides the minimum variance

solution to the linear least-squares problem. Thus, given a maximum

likelihood estimator for the nonlinear parameter vector, we may write the

maximum likelihood estimator for the linear parameters as

I -m = F#(fUL) z (49)

where F# denotes the Moore-Penrose generalized inverse.

By substituting -u back into the LSF, we are able to transform the

minimization problem into one in which we first minimize with respect to

the nonlinear parameters, and then solve for the linear parameters as a

I linear least-squares problem. This technique leads to the Variable

Projection Functional (VPF) which is defined as

= - (50)

-F (D F#( 112 (51)

I II (' F)z II (2
1 -II FZ 112 (52)

Here PF = F D F(D # is the projection operator onto the column space
i

of the basis function matrix and P F = I - PF is the projection

I
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operator onto the orthogonal complement of the column space of the basis

function matrix.

The argument just laid out is the key to the variable projection

I method. Golub and Pereyra [3] provide a proof that minimization using

the variable projection method leads to the same critical point as would

the traditional least-squares solution technique in which the LSF is

minimized with respect to all parameters simultaneously.

I 3.7 The Derivative of the Projection Operator

U In developing the gradient for the Variable Projection Functional

(VPF), an expression for the derivative of the projection operator with

respect to the nonlinear parameter vector, D(PF), will be needed. It is

also useful in itself when minimizing the YPF using the Gauss-Newton

iterative scheme.

I It is important to note prior to this development that although the

generalized inverse (g-inverse) arose in our application from the linear

least-squares normal equations, and thus implied the Moore-Penrose

pseudoinverse, the formation of the VPF and its derivative require a

g-inverse suitable for forming the projection operator only, thus this

I g-inverse need satisfy only (54) - (56) below. A heuristic argument for

this is that projecting a vector onto the column space of a matrix is a

simpler task than finding the minimum norm linear least-squares solution,

thus the requirements upon the g-inverse can be less stringent. A more

formal treatment of this matter will be provided in the next chapter,

while the present discussion will proceed with (54) - (58) as assertions.

The first three assertions are properties of g-inverses, (57) is anI
I
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expression for the projection operator, and (58) is the product rule of

differentiation. The symbol F+ will denote the g-inverse of the matrix F

throughout the discussion.

F F F = F (54)

[F F ]T=F F+  (55)

F 77 = F (58)

PF =- F F+  (57)

D(AB) = D(A) B + A D(B) (58)

Combining (54) and (57) and then applying eq. (58), we obtain

ID(F) = D(PFF)

= DPF F +'FD(F).

Rearranging yields

I D(PF) F' = D(F) - PF D(F),

and recalling 
that

I I PF
iwe see that II D(PF) F = PF D(F). (59)

Postmultiplying by F+ then yields +

D(PF) PF = D(PF) F F

= -- FP/ D(F) F . (60)

Transposing the left-hand side of this equation yields

[ D(PF) PF ]T = T[ D(PF) ]T

If we now partition D(PF) as

[ 87 F 87 1
-D.- F) I0 -~ i21 KJI60
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then transposition within the derivative tensor is equivalent to

transposition within each of the partial derivative 'slabs' (see section

3.3) shown in the above partition. Thus_ T [I P TI r F ]T PF)T
D(P _L_1 _]

I Now noting the symmetry of the projection operator and its partial

I derivative (the projection operator is, by definition, symmetric and

idempotent) we have shown that

I[ D (P) ]T = D(PF) and [D(PF) P_ ]T = PF D(PF). (61)

Now noting that the projection operator is idempotent, we write

(pF) 2 = PF"

i Substituting this into (58), we obtain

D(PF) = D(PF PF) = D(PF) PF + PF D(PF)

which, after applying (60) and (61), becomes

D(PF) = PF D(F) F+ + [ D(PF) PF ]T_ (62)

Again using (60) in the rightmost term, we obutain an expression for the

derivative of the projection operator which can be evaluated,

DPF = F D(F) F + + FiD(F) F+ ] (63)

3.8 The Gradient of the Variable Projection Functional

I Armed with the derivative of the projection operator, we may now form

an expression for the gradient of the Variable Projection Functional

(YPF).

Recall the definition of the VPF, given as

1= 1 Y/ 112.
I
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Applying (42), i.e. taking the derivative of the VPF with respect to the

nonlinear parameter vector, we obtain the gradient of the YPF as follows:

V02(9) ~ L 86F z]T})P F

-2 D { pI ]T P2 89 F F

Noting that

D {[ ] =D {D ) = -D(PF),

* we obtain
V02 (P) -(F) PF •4)

If we now substitute (63) for the derivative of the projector, we get

= -)= T(P D (F) F+ + [ PiD (F) + ] F Pi

Y-T 1 DF F+1 -- Y LT([F D(F)P (65) pF

Z- T F iD(F) F PF I Y--Y F)TDFT)PFiZ -(5I I
In arriving at (65), we recognized that PF is symmetric and

I idempotent, therefore

Now noting that

m + PF F [ I F =F+  - F FF+ =O,

we see that the first term in the gradient becomes zero, leaving

.21 V02 1T ,Fp+)T D(F T) I

T- [ 1 P D(F) F+ y]T (88)IF
I
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Equations (63) and (66) provide the ability to use any of the

gradient minimization techniques, which will be summarized as part of

Chapter 5, as well as the variable metric techniques, in solving the

variable projection nonlinear least-squares problem.

I
I
I
I
I
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U 4. LINEAR LEAST-SqUARBS THEORYI
As is clear from the preceeding chapter, linear least-squares theory,

particularly the concepts of the generalized inverse and the orthogonal

projection operator, are fundamental to general least-squares theory.

The purpose of this chapter is two-fold. The first objective is to

* review in some detail the characteristics of the projection operator and

the generalized inverse. The second objective is to summarize what

works, what doesn't, and when, as the popular qR factorizations are

applied to forming projection operators and solving linear least-squares

I problems.

Section 4.1 focuses on the orthogonal projection operator. Here,

following the the work of Halmos [13], the properties of the projection

operator, namely that it is idempotent and symmetric, will be discussed.

The eigenstructure of this operator is also examined.

I Sections 4.2 through 4.4 examine the properties of the generalized

inverse for finding solutions to consistent equations and linear least-

squares problems and finding minimum norm solutions to consistent

equations. The Moore-Penrose pseudoinverse, which leads to the minimum

norm least-squares solution, will then be examined.

Sections 4.6 through 4.9 look at the qR factorization, which is seen

in Section 4.6 to lead to a generalized inverse which is adequate for

I solving full rank linear least-squares problems. Sections 4.7 and 4.8

look at the rank deficient case, and give results for what we will call

the truncated qR factorization and for the complete orthogonal

factorization as outlined by Hanson and Lawson [14], Golub and Pereyra

[15], and Golub and Van Loan [16]. Here it is seen that while the g-I
I
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inverse formed using the truncated ql factorization does not lead to the

Moore-Penrose pseudoinverse, the complete orthogonal factorization does

achieve the minimum norm solution, and thus provides an alternative to

I the singular value decomposition for performing the necessary rank

reduction. Finally, the application of the complete orthogonal

factorization to nearly rank deficient matrices is discussed breifly in

* section 4.9.

4.1 The Projection Operator

I Consider the N-dimensional space and a linear subspace S C RN.

There exists a linear subspace S , called the orthogonal complement of

S in RN , such that RN is the direct sum of S and S .

Drawing from the work of Halmos [13], the following definitions and

equations (67) through (73) characterize the projection operators.

I Definition There exists an operator, PS' called the projector onto S,

which maps every vector in RN onto S.

Definition There exists an operator, PS i, called the projector onto

the complement of SNin R , which maps every vector in R onto S .

Furthermore, ±I
PS = I- PS. (67)

Now consider the vectors

x GS IGS G R

* where

Iwher= +  2 G S and 2 G S .

The projection operators defined above satisfy the following six

* relationships:

I
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S Es - E- (68) P. _S -- x o (6g)

|Ps Y 0 (70) PS i -Z (71)

Ps - - (72) PS !-2 (73)

From (68) and (71), the projection operator is easily shown to be

idempotent.

P s2 x = P- s (PS ) = PS
therefore 2

P 2 -=P S*(74)

Also, we see from (70) and (73) thatI I
PS (Ps -Z) = 0 so that PS PS = 0. (75)

Similarly, from (69) and (72), we see that

I I
P PS (PS A) = 0 so that PS PS = 0.

Finally, from (72) and (73), and from the definition of orthogonality

IT (Ps -ZT (el 2) = 0.

n Substituting (67) and transposing within the parantheses

aT T(I - z_ =.

Since this is true for all z in IRN,

PsT = PsT Ps" (76)

The right hand side is seen, by inspection, to be symmetric. Therefore

I the projection operator must also satisfy

T S = PS (77)

In summary, the projection operators PS and PS1 are idempotent,

symmetric, and mutually annihilating.

I
I
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Further insight can be gained by examining the eigenstructure of the

projector. Since the subspace S is invariant under the transformation

PS, it is known that S is spanned by some set of the eigenvectors of PS

I which correspond to a multiple unity eigenvalue (13]. The remaining

eigenvectors span the complement of S in RN and correspond to eigenvalues

of zero. The eigenvectors of Ps will also form a basis for IN .

To see that this eigenstructure exemplifies the operation of the

projector, consider the arbitrary N-vector z in the space N , which has a

set of basis vectors ui, i=1,...,N. We may choose this set of basis

vectors to be the eigenvectors of the N X N matrix PS, which is the

I projector onto the (say, M-dimensional) subspace S. We may now write

I and PS i = .i u. (78)

S= aI 1 +a 2 22 +e**+aNuN (79)

U thus

PS =  1al 1 + 2 a2 2 + + N aNN" (80)

I M of the N eigenvalues, those corresponding to the eigenvectors which

span the subspace S, will have value unity, while the remaining

eigenvalues will have a value of zero. We therefore have the result!M
Psz= a. u. (81)- "= a Jii

I where the indices j, denote those eigenvectors which span S.

I
4.2 The Generalized InverseI

In general, an N X M matrix A is a linear transformation which maps

an arbitrary vector x from an M-dimensional space to an N-dimensional

space which is the range (column space) of the mapping (matrix). We

I
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desire an inverse transformation which will map an N-vector z lying in

the range of A back into an U-dimensional space. If the vector z does not

lie in the range of A, then the inverse mapping must first approximate z

with a suitable vector which is in the range of the mapping. Let us first

consider the case where z does lie in the column space of A (consistent

equations).

For the N X M matrix A, the M X N matrix A+ is a generalized inverse

(g-inverse) of A if

x=

is a solution to the equationI A x = Z

for any y which makes the system consistent [17]. Clearly, then, for

consistent equations,

AA y=y .

Suppose

I z

for some arbitrary U-vector ! (which is obviously in the range of A),

I then

SAA+ Az=Az.

In general, this requires that

A A =A. (82)

In the most unrestricted sense, this is all that is required of a g-

I inverse. If we wish, however, to consider the case of inconsistent

equations, then we must impose further restrictions which determine how

we wish to approximate z before transforming.

I
I
I
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4.3 g-inverse for Linear Least-Squares 
Solution

I
Geometrically, the best approximant to z which makes the system

I consistent is the projection of z onto the column space of A. Thus for

the arbitrary vector z, the inconsistent equation

Ax=z

can be made consistent by premultiplying both sides by the projection

operator for the column space of A, yielding

I FA A x = PA z

But the projection of the columns of A onto themselves leaves them

I unaffected, so this reduces to

A x = P A z (83)

The g-inverse solution for x is then

x A+ P A "

If we substitute this into (83) and note, on the right hand side of (83),

that the projection operator is idempotent, this becomes

A A + FA = FA PA Z

From this, we see that the generalized inverse for solving linear least-

squares problems must be such that

PA = A A+

is, in fact, the projector onto the columns space of A. This then

requires that the product A A+ be idempotent and symmetric. That this is

I idempotent follows from (82), so that no new restriction is imposed. We

do have the further restriction, though, that A+ must satisfy

[A A+]T = A A+. (84)

I
I
I
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I 4.4 g-inverse for Minimum Norm Solution

i We know from the Section 4.2 that the g-inverse which solves the

consistent equation

A x y (85)

i must satisfy
I AA+A=A.

From this, it follows that

A - A A+ A = 0,

thus

I A [I- A+ A] =0.

We can therefore state that for any !,

A [I- A+ A] (86)

* is a solution to the homogeneous equation

A x = 0.

Analogously to the linear differential equatian, the general solution for

the set of simultaneous linear equations in (85) is the sum of the

homogeneous solution and a particular solution, and can thus be written

x = A+y + (I - A+ A]z.

Denote the g-inverse which leads to the minimum norm solution as A+.

* We desire then that

11 A+ Y 12  11~ Ay+ [ I -A+ A] 112 (87)

Note that for all y and z.

A + [ I - A A + A I112

I
I
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U 
Thus

1'_11A y] I A+ i
I IIA~zII2 IIA~11' + T[A+] IA ]

+S I_-A+ A]TA+y + _A+ AI .

This is a minimum when the two middle terms are zero, which occurs when

the particular solution is orthogonal to the homogeneous solution. In

general, this requires that

[A+]T [I - A+ A]- 0.

* Thus

[A ]T _ [A+]T A A.

For this to be true, it is necessary and sufficient [17] that

A+ AA = A+ (88)

[A+ A]T =A+ A. (89)

From (88) and (89), we see that the product A+ A is both idempotent

and symmetric and is thus a projection operator. We will now show that

it is, in fact, the projector onto the row space of A.

I + A =[A + A] T

- AT [A+]T

I[ = AT [AT]+,

which is the projection operator onto the columns of AT, which are the

rows of A.

In summary, the g-inverse for obtaining a minimum norm solution to

Ax=z

I must be such that
= +

APA = P A + A (o)

is the projection operator onto the row space of A.

I
I
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I Let us now re-examine the general solution, now written

I = A t Y , Px = A * [I-AP]

where we have substituted (90) into the homogeneous solution. Recall

from Section 4.1 that [I - P] is the projector onto the complement of the

subspace for which P is the projector; thus we see that the homogeneous

I solution is confined to the null space of A. Since the minimum norm

solution must be orthogonal to this homogeneous solution, what we are

really striving for in the minimum norm solution is that solution which

* lies in the row space of A.

4.5 g-inverse for Minimum Norm Least-squares Solution

I Combining the results of the last two sections, we see that the

g-inverse for obtaining the minimum norm least-squares solution, i.e. the

Moore-Penrose generalized inverse (pseudoinverse), must be such that

PA = A A
+

and

I AP =A+ A

are, respectively, the orthogonal projectors onto the column space and

the row space of OA. This is equivalent to the following:AA+ A=A

A A+]T = A A+
I(A + A+A A

A' AA~ =A

[A+ A]T A+ A.

I It is interesting to note that in forming the minimum norm linear

least-squares solution, we are actually performing a three-stage process.

Starting with the least-squares problem

I
I
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U A x (91)

where A is not necessarily full rank, we obtain the minimum norm solution

x = A+ 1. (92)

Stage I: Projection of z onto the column space of A to obtain a

consistent set of equations. This can be shown explicitly by

Isubstituting (92) into (91) above to yield
A A+

= PA A

Stage II: Solution to the consistent set of equations

Ai j

I to yield the general solution

x= A+j+ (I -A + A] ,

where, I is an arbitrary vector in RN .

Stage III: Projection of R onto the row space of A to obtain the minimum

norm solution (eliminate the homogeneous part of the solution). This can

be shown explicitly by substiting (91) into (92) above to yield

= A+ A| =AP

P= A+ PA Z
With this, we conclude our formal discussion of linear least-squares

theory. The remainder of this chapter will examine the QR factorization

family as they are used for forming projection operators and solving

I linear least-squares problems. In particular, we will look at how well

the g-inverses constructed with these factorizations conform to to the

equations outlined in this section.

I
I
I
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I 4.6 QR Factorisation of Full Rank Matrices

Consider the N X M matrix A of rank r = M N. There exists an N X N

orthogonal matrix q, such that

q A =R S L0 (93)

where

I1 MO/ [IMXM
is square, upper triangular, and nonsingular.

With this, we may write

and define a g-inverse of A as

A+= [' l 10] . (94)

Recalling that PA = A A+ , the projection operator becomeas

I ~ =T [(g [;')0I

where IM is the M X M identity matrix. We see by inspection that this is

I symmetric, and by squaring we see that it is idempotent,

I 'A = QT[IMI 0'] QQT [IMI ]I
oPo 2 0 0 J J ,

J 0 0T[q = p1At

I
I
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I where we have used the orthogonality of matrix Q. Thus we see that the

g-inverse defined in (94) is adequate for forming the projection operator

onto the column space of A.

Now recall the projection operator onto the row space of A,

AP = A+ A

I Substituting (94) into this equation yields

0 oI*= 0 0"

Thus this factorization satisfies the requirements for the Moore-Penrose

g-inverse. The least-squares functional for the linear least-squares

problem A x = b then becomes

I rin in A b 2 - II
x nx mm - - 11

a 11 mm A x 1

I tmi [ -- - 1 6)

Here, q has been partitioned as q = . The solution for x in* [ ) B N-M
Iin this case is determined uniquely as xLS = El-1 _ (97)

leaving a residual sum of squared error

I -LS) = II q2 h 112. (98)

i
I
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I 4.7 QR Factorization of Rank Deficient Matrices

I
In the case of rank deficient matrices, the qR factorization does not

lead to a g-inverse which satisfies the Moore-Penrose conditions. In this

section, it is shown that a truncated version of the qR factorization

I with column pivotting can, however, be used to construct a g-inverse

suitable for forming projection operators. In the next section, the

complete orthogonal factorization will be presented, which solves the

* problem of rank degeneracy and does lead to the Moore-Penrose

pseudoinverse.

Consider the N X M matrix A of rank r < M N. There exists an N X N

orthogonal matrix q, and an M X M permutation matrix S, such that

qA S =R [11 R1 '(9)

where

11= HrXr

I By truncating R, i.e. replacing 112 by a zero matrix, a g-inverse of A is

A + = s [ 1 (100)
S 0 101q

For this factorization, the projector onto the range of A becomes

I qT [S T S 0R-1

0 0 0

I 11
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which, as in the full rank case, conforms to the requirements of a

projection operator, thus this g-inverse is suitable if the formation of

the projector for the column space is all that is required. As we shall

now see, however, the product A+ A does not form a suitable projection

operator with this g-inverse.

IA+ A=S [x: o] -[-iI'2

0 00 0

II 12 sT (102)

While this is not symmetric and therefore cannot be used as a projector,

it is interesting to note that this factorization does satisfy the third

requirement of the Moore-Penrose pseudoinverse, namely that

A+ A A =A.I = [ I hub+ ++ Ir R1 11R 12 ST  R 11 1

A A A = AP  S :S0 0 0 0

Note also that this g-inverse satisfied all of the conditions for

forming the derivative of the projection operator in Chapter 2, thus it

is suitable for use in minimizing the variable projection functional even

when the basis function matrix is rank deficient.I
4.8 Complete Orthogonal Factorization of Rank Deficient Matrices

In this section, it is shown that an extension of the 4R

factorization, the complete orthogonal factorization, is a suitableI
I
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H alternative to the singular value decomposition for performing the rank

reduction necessary to obtain the minimum norm linear least-squares

solution.

Again consider the N X M matrix A with rank r < M N and the

orthogonal factorization [ l 12

I where

R 1 = H rXr"

There exists an M x M orthogonal matrix V such that

R = = [ ] (103)

where

R11
II =v rXr

From this, we may write A = qT R' yT ST and define the g-inverse

= q (104)

Now forming the projection operator PA' we obtain

PA = T 11 0 1 TsTsy [111 0]

010 0 o

= 4T { (105)

which is, once again, seen to be symmetric and idempotent. If we now

I attempt to form the projector onto the row space of A, we get

I
I
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UAP S V [ O0 qT [ - V vT ST

fatr=toV V TST  (106)

which is symmetric and idempotent. Thus the complete orthogonal

factorization leads to a g-inverse which is suitable for forming both

projection operators and minimum norm least-squares solutions.

With this g-inverse, the least-squares functional becomes

m rin 0 = minA x % - b [2

* mn x m Ax- b mn112

a 11  
-A - q--

,mnI ST q 112
minj ~A V VTST x q h 1[2

= min R~ 1'VTT x q 112.

If we let Z = xT , partition q as q= ,and partition

I V as V = [Vl 2 ]  we then obtain

mI 9 l ivT [] 20 1 0 V2T

2 [2

from which, if we partition y as [zT zT ]T, we obtain the solution

I 11 = V1 "n1' q b. (107)

I
I
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U We can now obtain a minimum norm solution by letting z2 = 0, yielding

ILS = S R, (108)Io
and, as in the full rank case, leaving a residual sum of squares

I(MLS) = II (o g1). (l o

4.9 Near Rank Deficient VatriciesI
Consider the N X M matrix A with numerical rank p = M N, but whose

I expected (ideal rank) is r M. There exists an N X N orthogonal matrix,

q, and an M X M permutation matrix, S, such that

q A S = R - (110)

where

I Column pivotting at each stage of the factorization will result in a

matrix which can be further partitioned as

I wherew r11N= 
rXr

and

I 122= tO (M-r) X (M-r)

I
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U If A were truly rank deficient, R22 would consist of zeros. But because

of perturbations in A, R22 will have non-zero elements. If the

perturbations are small, however, then the elements of 122 should also be

small, so that the rank deficiency can be uncovered when 112211 becomes

much smaller than flAIJ. Then rank reduction can be achieved by setting

22 to zero and solving the remainder of the problem as a truly rank

* deficient case.

Golub and Van Loan [16] point out that there are cases in which at no

step during the orthogonalization procefss is the norm of 122 very small,

even though the oriuginal matrix is rank deficient. But they also go on

I to say that this method of rank deternmination 'works well in practice.'

The reader is referred to Section 6.4 of Golub and Van Loan [16], and to

Golub, Klema, and Stewart [18].

I
I
I
I
I
I
I
I
I
I
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U 5. ALGORITHM

The purpose of this chapter is to develop an algorithm for the

maximum likelihood parameter estimation technique which utilizes the

variable projection method. Following Bard [5], Sections 5.1 through 5.4

review the gradient methods for iterative minimization. This review will

culminate in a discussion of the Gauss-Newton method applied to

minimization of a squared norm function (inclusive of the least-squares

and the variable projection functionals). Section 5.5 will then utilize

the results of Chapter 3 to formulate the Gauss-Newton step for the

I Variable Projection Nonlinear Least-squares method. Following this, a

* simplification to the algorithm noted by Kaufman [19] will be reviewed.

Finally, Marquardt's modification to the Gauss-Newton step will be

* discussed.

5.1 Iterative Minimization Techniques

I Given an objective functional 0(j) of the vector of parameters

we wish to determine the values for 9 such 0(j) is minimized. Iterative

minimization techniques [5] generate a sequences of vectors Oi. i=1,2,...

which hopefully converge to the true minimum of the objective function.

The vector . is called the i'th iterate.

Let us define

.= ei -(
I = the i'th update step

!and
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Definition: The i'th iterate is acceptable if 0i+1 < Oi that is, if the

addition of the i'th update step to the i'th iterate causes a decrease in

* the value of the objective function.

Each iteration consists of determining

(1) a vector d. in the direction of the i'th update step, and

(2) a scalr pi, such that the step Ai = pi i produces an acceptable

iteration. Thus we require that O(li+i) < 0(fi).1
5.2 Gradient Methods for Determining Step DirectionI

During the i'th iteration, we strike out from Oi along a direction d

generating the ray

I(P) = Gi+Pd" (112)
Here we have noted that, when confined to this ray, 0, and hence 0(f),

are functions of p alone. We may now define the confined objective

function as #id (P) ] = #( i+ P ) (113)

*Differentiating this with respect to p yields

atid [o I~T 12 [810 T
- - -- - dy (114)

and evaluating at p--O yields the directional derivative of # relative to

d at B0, defined as

d id T
id- ap ,2P- =S .

Here, Zi is the gradient of # evaluated at OilI
I
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Si 63 0=6 . (116)

A small positive value of p is guaranteed to produce a step which

decreases the value of the objective function if the directional

derivative at . is negative. Thus we may define d as an acceptable

direction if 9 < 0. This simply states that d is a downhill direction

on the contour of * if it forms a greater than 90' angle with the

gradient at 0i"

One obvious choice of direction for the i'th iterate is simply

d=-S (117)

This is the direction used for all iterations in the steepest descent

method, named for the fact that this is the direction in which the

I objective function initially decreases most rapidly. Unfortunately, this

often produces steps which zigzag back and forth down the contour,

leading to extremely slow convergence.

As an alternative, we may find an acceptable direction by finding a

suitable positive definite matrix R, and defining

n i = - R Si. (118)

The acceptability of this direction follows from the definition of

I positive definiteness as follows:

I idI = 9T i A T i < 0(119)

Minimization techniques in which directions are obtained in this way

are called zradient methods. If the positive definiteness of I is

strictly adhered to, then the method is called an acceptable gradient

method.I
I
I
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i 5.3 Newton's Method

I
It is well known from single variable calculus that a zero in a

function 6(x) can be found iteratively using the first order Taylor

approximation around a point x., given by

g(x) = g(xi) + [g'(xi)](x-xi).

This approximation can be extended to finding a local minimum of a

function f(x) by letting g(x) = f'(x),

V (x) = f'Cxi ) + [f'(xi)](x-xi).

Equating this to zero and rearranging, the i'th iteration becomes

x xi+ = xi _ [f'(xi)]-I (xi)

provided f'(xi)O.

Extending this to multivariable calculus, we obtain the update

I relation

ii+1 = i - Hi- 9i (120)

where 0 and S are as defined in the previous section and Hi = H(2i) is

I the Hessian matrix evaluated at 8.. The Hessian matrix is defined by

I mn .f n (121)
m n

Note here that Hi must be nonsingular.

Newton's method may be alternatively viewed as a second order Taylor

series approximation to the original function, given by

which is the best second order approximation to the original function.

Differentiating, we obtain

I
I!
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I0 1__ + R [1-1i] (123)

which, when set to zero yields the recursion

i+1 = - 13 - (124)

This relation satisfies the general formula for a gradient method

l iteration with pi=l and R1== -. If H is positive definite, then will

also be positive definite, and Newton's method will produce acceptable

iterations. Furthermore, if the objective function is quadratic, then

;() = O(W and Newton's method will converge in a single iteration.

In order to avoid calculating second derivatives, one may use the

Gauss approximation to Newton's method, or the Gauss-Newton method, which

requires only the evaluation of first derivatives. This will be brought

I to light in the next section.

5.4 Gauss-Newton Method

I
Consider an objective function of the form

= (125)

l e 2 (126)

j=1

I Among others, this form includes the least-squares and variable

projection functionals.

Differentiating with respect to the m'th component of the parameter

vector (and dropping the iteration index for convenience) yields the m'th

component of the gradient vector

N le.
m 8o - Z: e j ao (127)

m j=I m
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U Now differentiating this with respect to the n'th component of the

parameter vector yields the typical component of the Hessian matrix

N l 8. 8e N 8 2 e
2HC2}=2 86 ' o +22 e 8 0(128)

j= I m JI n j m n

Near a minimum of 0(g, the error e. will be small and will make the

second term above negligible compared to the first. It is by neglecting

this term that we obtain the Gauss approximation to the Hessian matrix,

given as

~(~J 2L [ 86] 8eJ (129)j=l m n

Let us now define the cost function derivative matrix[8e I 8e I I 8e 1.B = 861 861 I .1I . (130)

Having thus defined this derivative matrix, we may now rewrite both

the gradient vector and the Gauss approximation to the Hessian matrix in

terms of the derivative matrix as

S = 2 BT e (131)

and

N = 2 BT B (132)

If we now substitute the Gauss approximation to the Hessian matrix

into the gradient method equation for the step direction, i.e. R = N
-1

we obtain

d = - N 1

* or
N d = - g. 

(133)

Now substituting in (131) and (132) above, we get

BT Bd= - BT e. (134)I
Ia
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But these are just the normal equations for the linear least-squares

problem in which the error vector is projected onto the range of the

derivative matrix to obtain the vector d. Thus, the solution for d at

Ieach iteration is simply
d=- B# e, (135)

where B# is a Moore-Penrose pseudoinverse of B.

I
5.5 Variable Projection Nonlinear Least-Squares Gauss-Newton Iteration

This section will combine the results of the present chapter and

Ithose of the previous two chapters to devise an algorithm for the
Variable Projection method. Recall that the Gauss-Newton step is

obtained from

d- B# e,

where

[8e I e I I 8e ] 8eSI -B1 l I I K 8

From Chapter 3, equation (53), we have

I i
Thus F F 1

I B- 8HT a1 8 Tj

I =D PF] (136)

Substituting (63) for the Frechet derivative of the projection operator

yieldsI
I
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IF F -y P D(F) F + Z (137)

Now recall, from Section 4.7, the factorization of the N X IL matrix F

*given by

q F S R1 [ 1 ~2]
0 0

where Q is an N X N orthogonal matrix and S is an M X M permutation

matrix. From this we had defined the g-inverse of F

0 0

The projection operator onto the column space of F is then

I F = ['IJ 0 1 ] q,]

from which we can define the projector onto the orthogonal complement

of F in RN

o 0 N )

To simplify notation, let us define

S ]I ] 0 0 1I1= [-L --], I2= - and =i [ '= 10].
0 0 01 IN-M 0 0

With these definitions, we can write the g-inverse and the projection

operators, respectively, as

F +~ = S q,- (139)

I = qT I q, (140)
and

I =T 12 q. (141)

Substituting these definitions into (137) yields

I
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B=- Ti 2  D(F) S ";1 -q ( - I 2  D(F) S "1-1 q )T z. (142)

I This equation can be regrouped as follows to demonstrate how one might

implement the formation of the matrix. First, taking the transpose of

the second term yields

T(F - -1 q T Y qT ( 1-1 ]T ST  DF) T 2qY

If we now let v = y Z and C = q D(F), and x = F+ y we obtain

B=- T { Cx + ( R1-]T sT cT 2I
5.6 Kaufman's Variable Projection Algorithm

A much simpler version of the projection operator derivative, and

thus a simpler version of (142), was derived by Kaufman [19]. By

3 exploiting the structure of the projection operator and the isometric

properties of the orthogonal matrix q, Kaufman has shown that the second

term on the right hand side of (142) can effectively be ignored.

Noting that q has orthonormal columns, we know that

I ii I ii lI FZ Y 1=1 qPF Y-1 (143)

J 1 T 2 Y- I
= I 2 q II

3 Following Kaufman, we can define the new objective function

3 ,3 0 II I2 (144)

where we have partitioned q as

I
I
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I

While the derivative of Q2 is dependent upon the orthogonalization

process in which the matrix q is determined, and is therefore not unique,

Kaufman derives the following general formula whose results, though

nonunique, are similar "within an orthogonal transformation":

I D() =-q D(F) S 1 1-1 q + z q (145)

* where

zT + Z=0. (146)

I Since the matrix Z is not unique, neither is D(Q2 ). We can, however,

choose Z = 0, which certainly satisfies (146), leaving

B = D(Q2) = - q2 D(F) S, i -1 q Y., (147)

I which is the same result derived by Golub and Pereyra with the modified

projection operator and the second term in (142) disregarded.

With this definition for the derivative, the Gauss-Newton step

* direction becomes

where we have partitioned S as

5.7 Marquardt's Modification

I
Recall that for a gradient method to produce acceptable steps, the

matrix I i has to be positive definite. Neither Newton's method nor the

Gauss approximation to it ensure that Ri would be positive definite, so

I
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U that they cannot be considered, in their original form, acceptable

gradient methods. Noting an observation by Marquardt (20], we may force

the R. matrix in both cases to be positive definite, thus making the1

methods acceptable.

For some positive definite matrix, P, any matrix A can be made

Ipositive definite by adding XP, provided that the positive scalar X is
large enough. Thus we can ensure that an iteration produces an

acceptable direction by letting

I Ri = [Ai + i P]- (149)

where Ai is Hi, Ni, or some other appropriate matrix.

Several choices are available for the matrix Pi. In partricular,

suppose that Pi is diagonal. We may then define the diagonal matrix G

with elements

1 11/2
gj= Pi .. (150)

With this choice of G, we may write R. as1

If we focus specifically on the Gauss method, then the equation for

Ithe step direction with Marquardt's modification is
B. T2 B. + X. G. T G. ] d= B Te (152)
1I .3 1 1 1

This can be solved using the Cholesky factorization for symmetric

matrices, or we can note that these are simply the normal equations for

the linear least-squares problem

B.T B. d + X. G.T G. d =- B.T e. + X.1/2 G.T 0
1 3- 1 1 1 1 - 1

I
i
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I where we have added zero to the right hand side. The i'th step direction

can be calculated using the qR factorization for the linear least-squares

problem

B ei
d] - - (153)

I 1/2 a 0

whose solution is

I* =-[ 12 ] [ (154)

U 5.8 Step-Size DeterminationI
Upon determination of the step direction, the optimum, or near

optimum, step-size is determined using a line search along the given

direction. Essentially the step-size which yields the minimum residual

sum of squares is found by increasing the step-size (with large

increments) until the steps cease to cause a decrease in the residual,

then small decrements are taken until the actual optimum value is found

* (when the steps again cease to yield a decrease in residual sum of

squares).I
I
I
I
I
I
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U 6. RESULTS AND CONCLUSIONS

I
Monte Carlo simulations were run to test the effectiveness of the

algoritihm outlined in this report. This chapter will present the

transducer model used in the computer simulations, the results

I obtained, and conclusions based on those results.

6.1 Transducer ModelI
The transducer model used was a two-pole high-pass filter excited by

stepped sinusoid (Model 1). The Laplace transform of the theoretical

* response is

w0

w1 (s) = 2 H1(s) , 0 2xrf0

2
H1(s)= 2 - 2 ' C1 =27fCl

s +2 lWlS+W C1

The peak of the transfer function magnitude IH(jw)l occurs at

f m1 = fCl(1-2512)-1/2

I The Q (quality factor) is the ratio of the peak response frequency to the

3 dB bandwidth and is approximately

Q, =1/25I - 2 1 - - 5 "

This model can be seen as either the acoustic signal from a projector

modeled as a 2-pole high-pass or as the electrical signal seen at the

output of a hydrophone when the acoustic signal is an ideal stepped

sinusoid.

I
I
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U The s-plane pole parameters for the decaying component of the

transient are

f= 2f 1

1 C, (1-12

The exact time function, y(t), is

y1 (t) = A0  cos(2rf0 t) + A0  sin(2rf0 t)

A1  *-at cos(27f1t) + e-at sin(27f 1 t)A1C AS

where

C 
2; (fO/fC 1) 3

C A (25ifo/foi ) 2 + [(fO/ICi) 2 _ 1] 2}

A (f/fC)
2  1(fO/fC)2 _ 1]

o {(25ifo/fCi) + [(fo/fC 2 ' _ ]

A 2; (1o/f C) 3

A1  {4!12(1-12) + [(fO/fCl)2 + 2!1 2 _ 1]2}

(fO/fC
1 ) [(fO/fC) 

2 (12!j2 ) -1]
As = 1i2 {45i2(1-12) + [(fO/fCl) + 2512- i]2}

I
6.2 Simulation ResultsI

All results were calculated based on 100 Monte Carlo trials. The

signal-to-noise ratio used was defined in terms of the steady state

* amplitude as follows:

I
I
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SSNR(dB) =10 log [ 2

Tables 1, 2, and 3 give a nuuerical representation of the results for

Q's of 4, 8, and 12, respectively. In each table, the bias, standard

deviation, root mean square error, and Cramer-Rao bound are given for the

steady-state amplitude (AO) and the transient damping factor (a,) and

frequency (fl) at each of the signal-to-noise ratios simulated.

Figures 3-5 give a graphical comparison of the results for this

computer implementation of the variable projection nonlinear least-

squares method to those of the principal component linear prediction

method described in Chapter 2. For each parameter (Ao, al, and fl), a

plot of normalized mean square error vs. signal-to-noise ratio (MSE's are

normalized to the C-R bound) for each Q (4, 8, and 12).I
I
I
I
I
I
I
I
I
I
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U Table 1: Normalized Estimator Results for Parameter A0

StandardIQ SNR Bias Deviation RMS Error C-R Bound

00

4 25 3.1397E-02 7.8014E-02 7.7686E-02 5.7052E-02I4 27 3.8494E-03 5.5601E-02 5.5456E-02 4.5318E-02
4 30 3.3125E-03 3.816SE-02 3.8118E-02 3.2083E-02
4 33 2.4347E-03 2.6829E-02 2.6805E-02 2.2713E-02I4 37 1.7988E-03 1.7345E-02 1.7352E-02 1.4331E-02
4 40 1.0275E-03 1.1992E-02 1.1976E-02 1.0145E-02
4 50 2.6404E-04 3.7056E-03 3.6965e-03 3.2083E-03
4 60 8.3761E-05 1.1663E-03 1.1634B-03 1.0145E-03

8 25 -9.3872E-02 2.6597E-01 2.8072E-01 1.7476E-01
8 27 -1.1479E-03 2.2148E-01 2.2038E-01 1.3882E-01I8 30 1.5533E-02 1.1790E-01 1.1834E-01 9.8276E-02
8 33 1.0685E-02 7.8684E-02 7.9015E-02 6.9575E-02
8 37 8.8030E-03 4.6857B-02 4.7116E-02 4.3899E-02
8 40 5.2801E-03 3.2613E-02 3.2877E-02 3.1078E-02
8 50 1. 7833E-03 9.7773E-03 9.8904E-03 9.8276E-03
8 60 4.8134E-04 3.2679E-03 3.2869E-03 3.1078E-03

I12 25 -3.0256E-01 4.0855E-01 5.0674E-01 371E0
12 27 1.5185E-01 4.0974E-01 4.3505E-01 2.9637E-01
12 30 7.8057E-02 6.0740B-01 6.0938E-01 2.0981E-01I12 33 3.8631E-02 2.0769E-01 2.1023E-01 1.4854E-01
12 37 1.8663E-02 1.0343E-01 1.0459E-01 9.3721E-02
12 40 1.4054E-02 6.9019E-02 7.0096E-02 6.6349E-02
12 50 4.0782E-03 2.1160E-02 2.1445E-02 2.0981E-02

12 60 1.2375E-03 8.5496E-03 6.6333E-03 6.6349E-03
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H Table 2: Estimator Results for Parameter a1

StandardIQ SNR Bias Deviation RMS Error C-R Bound

a -a1  0'1  MSEa CR a

4 25 -1.0488E-02 2.9812E-01 '2.9681E-02 1.1262E-01
4 27 1.2867E-02 9.4643E-02 g.5044E-02 8.9461E-02
4 30 1.0796E-02 6-5190E-02 6.5755E-02 6.3334E-02

4 03.35g3E-03 2.1771E-02 2.1921E-02 2.0028E-02
480 .348 7E-04 6. 9761E-03 7. 0038B-03 6. 3334BE-03
4 02.9473E-04 2.2050E-03 2.2246E-03 2.0028E-03

I8 25 -2.2919E-01 5.3391E-01 5.7857E-01 1.2295E-01
8 27 -4.5185E-02 2.5344LE-01 2.5619E-01 9.7661E-02
8 30 9.5538E-03 6.7355E-02 6.7685E-02 6.9138E-02

8 33 7.4555E-03 4.8321E-02 4.8654E-02 4.8946E-02
8 37 5.0330E-03 3.0256E-02 3.0522E-02 3.0883E-02

8 40 4-0504E-03 2.1383E-02 2.1658E-02 2.1863E-02
8 50 1.4110E-03 6.5945E-03 6.7114E-03 6.9138E-03

8 60 3.8313E-04 2.2454E-03 2.2667E-03 2.1863E-03

12 25 -5.6826E-0l 7.4937E-01 9.3747E-01 1.4781E-01I12 27 -3.318SE-01 6.0141E-01 6.8425E-01 1.1741E-01
12 30 -2.7766E-02 2.2919E-01 2.2972E-01 8.3121E-02
12 33 9.7796E-03 5.7614E-02 5.8153E-02 5.8845E-02
12 37 6.5181E-03 3.5428E-02 3.5848E-02 3.7129E-02
12 40 5.2898E-03 2.4906e-02 2.5339e-02 2.6285E-02
12 50 1.6507e-03 8.1051e-03 8.2316e-03 8.3121E-03
12 60 5.1621e-04 2.5330e-03 2.5727e-03 2.6285E-03
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U Table 3: Estimator Results f or Parameterf

StandardIQ SNR Bias Deviation RMS Error C-R Bound

1 fi JMSE C

4 25 -1.0416E-02 8.0899E-02 8.1165E-02 2.1509E-02
4 27 -2.6716E-03 1.7504E-02 1.7620E-02 1.7085E-02I4 30 -1.3759E-03 1.2783E-02 1.2793E-02 1.2095E-02
4 33 -9.6422E-04 9.0174E-03 g.0239E-03 8.5629E-03
4 37 -6.0650E-04 5.3263E-03 5.3342E-03 5.4028E-03
4 40 -4.2107E-04 3.7593E-03 3.7641E-03 3.8249E-03
4 50 -1.0745E-04 1.2411E-03 1.2396E-03 1.2og5E-03
4 60 -3.1262E-05 3.8806E-04 3.8738E-04 3.8249E-04

I8 25 -9. 8704E-02 1. 9825E-01 2. 2057E-01 2. 1502E-02
8 27 -2.9563E-02 1.1967E-01 1.5051E-01 1.7080E-02
8 30 -2.2884E-03 1.1726E-02 1.1890E-02 1.2091E-02I8 33 -1.4406E-03 8.4651E-03 8.5450E-03 8.5600E-03
8 37 -7.6443E-04 5.2576E-03 5.2868E-03 5.4010E-03
8 40 -6.2716E-04 3.6980E-03 3.7325E-03 3.8236E-03
8 50 -1.5717E-04 1.2063E-03 1.2105E-03 1.2091E-03
8 60 -4.1869B-05 3.8314E-04 3.3869E-04 3.8236E-04

12 25 -2.3453E-01 2.6917E-01 3.5599E-01 2.5071E-02I12 27 -1.3253E-01 2.2330E-01 2.5870E-01 1.9920E-02
12 30 -2.4989E-02 1.1681E-01 1.1888E-01 1.4102E-02
12 33 -1. 7707E-03 9. 5334E-03 9. 6495E-03 9. 9836E-03
12 37 -9.7337E-04 6.1725E-03 6.2183E-03 6.2992E-03
12 40 -7.3483E-04 4.3372E-03 4.3776E-03 4.4595E-03
12 50 -2.3559E-04 1.3686E-03 1.3820E-03 1.4102E-03
12 60 -7.4384E-05 4.1825E-04 4.2275E-04 4.4595R-04



64

I0 0

ILm

CL

CC

ZI 0
PLo

0 C

0~

M 0.z

(Iw =
000000 0cz~

0 0
0 114

0) 10

LL UVA S1IUO 19J 3SN~



65

0~

o M

x

II

()
QI

c a ) ~ m m m m m mg / u
c-

c ClC

*U .4. 0
00

co x

0)0

UIVA e1-IUCIG



I
66

C 0

I o .1..... .

m ,'IL.L

0)

o 00

I 
CD

I a .oo

LOo

mm, IVA 8]-IHO 19J =3SIY

I



I
87

6.3 ConclusionsI
The results given demonstrate that this computer implementation of

the variable projection nonlinear least-squares algorithm exhibits

maximum likelihood performance above a threshold signal-to-noise ratio

which depends upon the Q of the model. Below the threshold SNR, this

implementation departs from maximum likelihood performance. Judging from

the behavior of the results and observations of the convergence behavior

I below the threshold SNR, it appears that the current implementation of

the variable projection method is unable to converge when the initial

estimate from the principal component linear prediction method is far

removed from the true minimum of the variable projection functional (see

Appendix B). Future work will examine alternative step-direction and

step-size search methods which should improve the performance at these

low signal-to-noise ratios.

I!
I
I
I
I
I
I
I
I
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A. qI Factorization by Successive Householder TransformationI
The Householder reflector is defined [9] as

I U=I- -I _' T

such that Uxo

-where

o = sgn(xl) IIall,

I Ul = 1 + a

ui = xi  i=1,2,...,n

When triangularizing the matrix F using successive Householder

3 reflectors, each column of F is transformed by reflectors formed from

each of the preceeding columns; i.e. denoting as Ui the Householder

I reflector which zeros the elements below the i'th diagonal, then we

i define

0 1
such that H1 zeros the elements below the first diagonal and transforms

columns 2 through M, H2 zeros the elements below the second diagonal

and transforms columns 3 through M, and so on. Thus the i'th reflector

effects only the rightmost M-i+l columns and the lower N-i+l rows.

After the reflector has been constructed for all M columns, the

orthogonal matrix q is defined as

q =HM HM-1 eeH 2 HI.

I
I
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Furthermore, since only the vector u. and the scalar Pi are

necessary for forming H. at each stage, all information concerning the

construction of q can be saved by storing the last n-i elements of u

I below below the i'th diagonal element of F and storing the pre-

transformation value of the diagonal element in an auxillary vector

(note that the post-transformation value of the diagonal is -ai, so

that Yi is indirectly available).I

I
I
I
I
I
I
I
I
I
I
I



I
73

U B. Variable Projection Functional Contour and Surface Plots

I
This appendix contains contour and surface plots for the variable

projection functional of the two-pole high-pass filter transducer model

(see Section 6.1). For a given parameter set, the noiseles observation

vector, z, and the known excitation frequency will be fixed and this

functional can be written solely in terms of the parameters a and f as

R(a, f) = 1 - ~F(af ) zfl
For each of these signal parameters sets

{N=16, T=0.25, q=4, fml=1.O, fOw1.O}

{N=16, T=0.25, Q=8, fml=1.0, fO=-1.0}

I {N=16, T--0.25, Q=12, fml=l.0, fO=-1.0}

{N=16, T=0.25, Q=4, fml=1.O, fO=O.5}

contour plots are given with a in Nepers given along the horizontal axis

and f in Hertz given along the vertical axis. Following each contour

plot, the following views of each error surface (RSS vs. a and f) are

I provided:

1. Surface viewed from large f and small a

o2. Surface viewed from small f and large a

3. Surface viewed from the a=O plane (front side)

4. Surface viewed from the a=1.5 plane (back side).

These plots exhibit the flat nature of the functional's surface as

the frequency estimate (f) becomes far removed from the true minimum of

I the functional. It is in these areas particularly that the problems

described in Section 6.3 occur.

I
I
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U ~The non-resonance excitation case (f 0=0.5) was included above for

i comparison. This contour suggests a smoother surface than the

excitation-at-resonance cse.
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